Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(9): 1131-1146, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38598681

RESUMO

Despite the importance of proline conformational equilibria (trans versus cis amide and exo versus endo ring pucker) on protein structure and function, there is a lack of convenient ways to probe proline conformation. 4,4-Difluoroproline (Dfp) was identified to be a sensitive 19F NMR-based probe of proline conformational biases and cis-trans isomerism. Within model compounds and disordered peptides, the diastereotopic fluorines of Dfp exhibit similar chemical shifts (ΔδFF = 0-3 ppm) when a trans X-Dfp amide bond is present. In contrast, the diastereotopic fluorines exhibit a large (ΔδFF = 5-12 ppm) difference in chemical shift in a cis X-Dfp prolyl amide bond. DFT calculations, X-ray crystallography, and solid-state NMR spectroscopy indicated that ΔδFF directly reports on the relative preference of one proline ring pucker over the other: a fluorine which is pseudo-axial (i.e., the pro-4R-F in an exo ring pucker, or the pro-4S-F in an endo ring pucker) is downfield, while a fluorine which is pseudo-equatorial (i.e., pro-4S-F when exo, or pro-4R-F when endo) is upfield. Thus, when a proline is disordered (a mixture of exo and endo ring puckers, as at trans-Pro in peptides in water), it exhibits a small Δδ. In contrast, when the Pro is ordered (i.e., when one ring pucker is strongly preferred, as in cis-Pro amide bonds, where the endo ring pucker is strongly favored), a large Δδ is observed. Dfp can be used to identify inherent induced order in peptides and to quantify proline cis-trans isomerism. Using Dfp, we discovered that the stable polyproline II helix (PPII) formed in the denatured state (8 M urea) exhibits essentially equal populations of the exo and endo proline ring puckers. In addition, the data with Dfp suggested the specific stabilization of PPII by water over other polar solvents. These data strongly support the importance of carbonyl solvation and n → π* interactions for the stabilization of PPII. Dfp was also employed to quantify proline cis-trans isomerism as a function of phosphorylation and the R406W mutation in peptides derived from the intrinsically disordered protein tau. Dfp is minimally sterically disruptive and can be incorporated in expressed proteins, suggesting its broad application in understanding proline cis-trans isomerization, protein folding, and local order in intrinsically disordered proteins.


Assuntos
Flúor , Prolina , Prolina/química , Prolina/análogos & derivados , Flúor/química , Cristalografia por Raios X/métodos , Conformação Proteica , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Molecular
2.
Biochemistry ; 63(9): 1118-1130, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38623827

RESUMO

Acyl capping groups stabilize α-helices relative to free N-termini by providing one additional C═Oi···Hi+4-N hydrogen bond. The electronic properties of acyl capping groups might also directly modulate α-helix stability: electron-rich N-terminal acyl groups could stabilize the α-helix by strengthening both i/i + 4 hydrogen bonds and i/i + 1 n → π* interactions. This hypothesis was tested in peptides X-AKAAAAKAAAAKAAGY-NH2, where X = different acyl groups. Surprisingly, the most electron-rich acyl groups (pivaloyl and iso-butyryl) strongly destabilized the α-helix. Moreover, the formyl group induced nearly identical α-helicity to that of the acetyl group, despite being a weaker electron donor for hydrogen bonds and for n → π* interactions. Other acyl groups exhibited intermediate α-helicity. These results indicate that the electronic properties of the acyl carbonyl do not directly determine the α-helicity in peptides in water. In order to understand these effects, DFT calculations were conducted on α-helical peptides. Using implicit solvation, α-helix stability correlated with acyl group electronics, with the pivaloyl group exhibiting closer hydrogen bonds and n → π* interactions, in contrast to the experimental results. However, DFT and MD calculations with explicit water solvation revealed that hydrogen bonding to water was impacted by the sterics of the acyl capping group. Formyl capping groups exhibited the closest water-amide hydrogen bonds, while pivaloyl groups exhibited the longest. In α-helices in the PDB, the highest frequency of close amide-water hydrogen bonds is observed when the N-cap residue is Gly. The combination of experimental and computational results indicates that solvation (hydrogen bonding of water) to the N-terminal amide groups is a central determinant of α-helix stability.


Assuntos
Amidas , Ligação de Hidrogênio , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Água , Água/química , Amidas/química , Peptídeos/química , Teoria da Densidade Funcional , Modelos Moleculares , Estrutura Secundária de Proteína
3.
Chemistry ; : e202401454, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661017

RESUMO

The type II polyproline helix (PPII) is a fundamental secondary structure of proteins. PPII is stabilized in part by n®p* interactions between consecutive carbonyls, via electron delocalization between an electron-donor carbonyl lone pair (n) and an electron-acceptor carbonyl (p*) on the subsequent residue. We previously demonstrated that changes to the electronic properties of the acyl donor can predictably modulate the strength of n®p* interactions, with data from model compounds, in solution in chloroform, in the solid state, and computationally. Herein, we examined whether the electronic properties of acyl capping groups could modulate the stability of PPII in peptides in water. In X-PPGY-NH2 peptides (X = 10 acyl capping groups), the effect of acyl group identity on PPII was quantified by circular dichroism and NMR spectroscopy. Electron-rich acyl groups promoted PPII relative to the standard acetyl (Ac-) group, with the pivaloyl and iso-butyryl groups most significantly increasing PPII. In contrast, acyl derivatives with electron-withdrawing substituents and the formyl group relatively disfavored PPII. Similar results, though lesser in magnitude, were also observed in X-APPGY-NH2 peptides, indicating that the capping group can impact PPII conformation at both proline and non-proline residues. The pivaloyl group was particularly favorable in promoting PPII.

4.
Org Biomol Chem ; 21(13): 2779-2800, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920119

RESUMO

Cysteine sulfonic acid (Cys-SO3H; cysteic acid) is an oxidative post-translational modification of cysteine, resulting from further oxidation from cysteine sulfinic acid (Cys-SO2H). Cysteine sulfonic acid is considered an irreversible post-translational modification, which serves as a biomarker of oxidative stress that has resulted in oxidative damage to proteins. Cysteine sulfonic acid is anionic, as a sulfonate (Cys-SO3-; cysteate), in the ionization state that is almost exclusively present at physiological pH (pKa ∼ -2). In order to understand protein structural changes that can occur upon oxidation to cysteine sulfonic acid, we analyzed its conformational preferences, using experimental methods, bioinformatics, and DFT-based computational analysis. Cysteine sulfonic acid was incorporated into model peptides for α-helix and polyproline II helix (PPII). Within peptides, oxidation of cysteine to the sulfonic acid proceeds rapidly and efficiently at room temperature in solution with methyltrioxorhenium (MeReO3) and H2O2. Peptides containing cysteine sulfonic acid were also generated on solid phase using trityl-protected cysteine and oxidation with MeReO3 and H2O2. Using methoxybenzyl (Mob)-protected cysteine, solid-phase oxidation with MeReO3 and H2O2 generated the Mob sulfone precursor to Cys-SO2- within fully synthesized peptides. These two solid-phase methods allow the synthesis of peptides containing either Cys-SO3- or Cys-SO2- in a practical manner, with no solution-phase synthesis required. Cys-SO3- had low PPII propensity for PPII propagation, despite promoting a relatively compact conformation in ϕ. In contrast, in a PPII initiation model system, Cys-SO3- promoted PPII relative to neutral Cys, with PPII initiation similar to Cys thiolate but less than Cys-SO2- or Ala. In an α-helix model system, Cys-SO3- promoted α-helix near the N-terminus, due to favorable helix dipole interactions and favorable α-helix capping via a sulfonate-amide side chain-main chain hydrogen bond. Across all peptides, the sulfonate side chain was significantly less ordered than that of the sulfinate. Analysis of Cys-SO3- in the PDB revealed a very strong propensity for local (i/i or i/i + 1) side chain-main chain sulfonate-amide hydrogen bonds for Cys-SO3-, with >80% of Cys-SO3- residues exhibiting these interactions. DFT calculations conducted to explore these conformational preferences indicated that side chain-main chain hydrogen bonds of the sulfonate with the intraresidue amide and/or with the i + 1 amide were favorable. However, hydrogen bonds to water or to amides, as well as interactions with oxophilic metals, were weaker for the sulfonate than the sulfinate, due to lower charge density on the oxygens in the sulfonate.


Assuntos
Cisteína , Ácidos Sulfônicos , Cisteína/química , Ácidos Sulfônicos/química , Peróxido de Hidrogênio , Peptídeos/química , Proteínas/química , Amidas
5.
Chembiochem ; 23(24): e202200409, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36129371

RESUMO

Proline residues within proteins lack a traditional hydrogen bond donor. However, the hydrogens of the proline ring are all sterically accessible, with polarized C-H bonds at Hα and Hδ that exhibit greater partial positive character and can be utilized as alternative sites for molecular recognition. C-H/O interactions, between proline C-H bonds and oxygen lone pairs, have been previously identified as modes of recognition within protein structures and for higher-order assembly of protein structures. In order to better understand intermolecular recognition of proline residues, a series of proline derivatives was synthesized, including 4R-hydroxyproline nitrobenzoate methyl ester, acylated on the proline nitrogen with bromoacetyl and glycolyl groups, and Boc-4S-(4-iodophenyl)hydroxyproline methyl amide. All three derivatives exhibited multiple close intermolecular C-H/O interactions in the crystallographic state, with H⋅⋅⋅O distances as close as 2.3 Å. These observed distances are well below the 2.72 Šsum of the van der Waals radii of H and O, and suggest that these interactions are particularly favorable. In order to generalize these results, we further analyzed the role of C-H/O interactions in all previously crystallized derivatives of these amino acids, and found that all 26 structures exhibited close intermolecular C-H/O interactions. Finally, we analyzed all proline residues in the Cambridge Structural Database of small-molecule crystal structures. We found that the majority of these structures exhibited intermolecular C-H/O interactions at proline C-H bonds, suggesting that C-H/O interactions are an inherent and important mode for recognition of and higher-order assembly at proline residues. Due to steric accessibility and multiple polarized C-H bonds, proline residues are uniquely positioned as sites for binding and recognition via C-H/O interactions.


Assuntos
Prolina , Proteínas , Prolina/química , Modelos Moleculares , Hidroxiprolina , Ligação de Hidrogênio , Proteínas/química
6.
Chembiochem ; 20(7): 963-967, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548564

RESUMO

The preferred conformations of peptides and proteins are dependent on local interactions that bias the conformational ensemble. The n→π* interaction between consecutive carbonyls promotes compact conformations, including the α-helix and polyproline II helix. In order to further understand the n→π* interaction and to develop methods to promote defined conformational preferences through acyl N-capping motifs, a series of peptides was synthesized in which the electronic and steric properties of the acyl group were modified. Using NMR spectroscopy, van't Hoff analysis of enthalpies, X-ray crystallography, and computational investigations, we observed that more electron-rich donor carbonyls (pivaloyl, iso-butyryl, propionyl) promote stronger n→π* interactions and more compact conformations than acetyl or less electron-rich donor carbonyls (methoxyacetyl, fluoroacetyl, formyl). X-ray crystallography indicates a strong, electronically tunable preference for the α-helix conformation, as observed directly on the φ and ψ torsion angles. Electron-donating acyl groups promote the α-helical conformation, even in the absence of the hydrogen bonding that stabilizes the α-helix. In contrast, electron-withdrawing acyl groups led to more extended conformations. More sterically demanding groups can promote trans amide bonds independent of the electronic effect on n→π* interactions. Chloroacetyl groups additionally promote n→π* interactions through the interaction of the chlorine lone pair with the proximal carbonyl π*. These data provide additional support for an important role of n→π* interactions in the conformational ensemble of disordered or unfolded proteins. Moreover, this work suggests that readily incorporated acyl N-capping motifs that modulate n→π* interactions may be employed rationally to promote conformational biases in peptides, with potential applications in molecular design and medicinal chemistry.


Assuntos
Peptídeos/química , Teoria da Densidade Funcional , Modelos Químicos , Prolina/química , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...